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A significant quantity of publications devoted to the investigation of the dynamics 
of expansion up to the rupture of metal pipes is known (see [1-5], for instance). 

Considered below is the question of clarification of the physical regularity of the 
nonmonotonic nature of the change in the ultimate magnitude of the deformation of a cylindri- 
cal metal shell in the strain rate range i03-i0 s sec -z. The results in [6-9] are closest 
to the idea of the energetic approach to the rupture problem developed here. In particular, 
commonality of the law for the existence of a "plasticity peak" for real metals during un- 
steady strain up to rupture is given a foundation. 

i. Formulation of the Problem 

A hollow metal cylinder subjected to internal pressure varying with time is expanded 
axisymmetrically until rupture under given initial data. There is no pressure on the shell 
outer boundary. Unsteady isentropic strain of the cylinder material is realized in a scheme 
of an isotropic continuous viscoplastic medium without vorticity. 

The stress tensor components or, o8, o z, the radial component of the velocity vector v, 
and the density of the medium p in the ring under plane strain conditions are determined 
from a known system of equalities including the equation of motion of a continuous medium 
outside a mass force field, the continuity equation, and relationships of a viscoplastic 
medium [I0, ii]. In formulating a mathematical model in an exact formulation, it is neces- 
sary to add to the above the equation of state and mass, momentum, and energy conservation 
laws before and behind the shock front (see, e.g., [12]). In a one-dimensional formulation 
of the experiment, the equation of state for metals is approximated satisfactorily by the 
equality 

Q(v)  = A [(V/Vo) n - 1 l ,  ( 1 . 1 )  

where A, n > 0 are constants determined in tests, and P0 is the initial density of the material. 

It is noted in [13, 14] that under impulsive loading of metallic shells the time of 
compression and unloading wave propagation and interaction over the shell thickness is less 
as compared with the total time of its deformation until rupture. Later, the wave nature 
of the change in density of the medium is not taken into account. We formulate averaging 
of the density with respect to time and thickness of the shell in the form of the following 
hypotheses: 

a) The density of the material is homogeneous along the wall during unsteady axisymmet- 
ric expansion of a plane ring and is a function of just the time p(t), the specific case 

p = V o t R I / R l o )  = ' ' -  (1.2) 
is examined below; 

b) The density distribution is independent of the time but changes along the thickness 
of the wall 

P = Po (r/R~o) ~2. (1 .3 )  
Here the dimensionless parameters ~z and ~2 depend, according to (1.i)-(1.3), on the initial 
data of the loading process and are determined from the relationships 
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where the dot denotes differentiation with respect to time t e 0, R~0, R20 (R~0 < R20) are 
the inner and outer radii of the plane ring at the initial time, and e~0 > 0 is the initial 
strain rate of the medium on the ring inner surface. 

Hypotheses a) and b) can have a real personification during the unsteady deformation of 
cylindrical shells and depend, in particular, on the method of fabricating these latter�9 
In the general case, the real law of variation of the cylindrical shell material density 
over the shell thickness, on the average, still requires its determination during nonstation- 
ary motion�9 

Specifically, it is known that under uniaxial tension of metal specimens up to rupture 
under normal conditions, the material density diminishes, especially in the neighborhood 
of the rupture (neck) [15]. The diminution of the density under significant plastic de- 
formations is explained by metal scientists by the formation of pores within and between 
the material grains (the so-called destruction) [16]. 

In turn, the metal density increases under the effect of intense shocks [12]. Therefore, 
because of the wave nature of compression and unloading wave interaction over the shell thick- 
ness in the initial stage of the motion, and then during intense deformation up to rupture, 
the law of material density variation can be approximated completely formally by the equali- 
ties (1�9 It is interesting to consider both cases in the subject of the influence 
of shell material compressibility during rupture. The possibility of comparing the results 
is conserved here in the scheme of an incompressible medium (~ = ~2 = 0). 

. Analytic Solution 

Determination of the solution of the mathematical model for a plane ring with given 
boundary and initial conditions is simplified substantially under the hypotheses taken. 
case a), 

v = blr -1 --  epr, ep ---- pl2p, p = p(t), 

b I = (e~ + ep) R ~  e~ = Ri/R~, R~ - -  R~ = (R~o --  R~o) Po/P, 

�9 - �9 ( 5 / 0 "  
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+ ($~ + Sb ( . : -  RI) ] -  27b, (R; ~: -.--0), 
~o = (;r + ~, + 47b~r -~, ~ = ~ + 0~5~ + 2~b~r-2, 

_ (~, + phi) In R21R, + p (co + e~,) (R: --  R~,)I2 + b 1 (pb,12 + 27) (R7 = = R[~); 

v ---- b2r-(%+l)~ P = Po (r/Rlo) ~ ,  
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o . =  ((y, + poRlo , b , ) l n r / R , +  b,(  a- .~-f  "O, po/q o_-%+zT)tr_ , [  -(%+=)_R~-(%+:)],  

-(%+2) 

, - (%+2) 
a~ = a~ + 0,5a~ + tt (% +2)  o F 

- - r  2 �9 

P~ \'RT/ 

, , ,  + '. 'l r.,,a.-<., + . , , _  .,, - <o,. +., , l + b~ lw 'Z-~  ~lo ~ + 27 /L 3, 

( RIO ~ 2"~ 
P~ k ~ /  

i n  c a s e  b ) ,  

I n  
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Here, os is the dynamic yield point; ~, coefficient of dynamic viscosity; r, O, z, cylindri- 
cal coordinate system and, P0, initial pressure on the ring inner boundary which diminishes 
during expansion of the boundaries of a shell with the isentropic index ~ > i. 

Systems (2.1) and (2.2) agree for an incompressible medium (~i = a2 = 0). For ~ = 0, 
al = a2 = 0 we obtain the known solution for axisymmetric expansion of a cylindrical shell 
in an ideal plasticity scheme [17] from (2.1), (2.2). When D = 0, os = 0, ~i = a2 = 0, we 
have the case of an ideal incompressible fluid [18] from (2.1), (2.2). Taking account of 
the relationships between the running values of the ring radii R I and R 2 and the initial 
data, the last equations in (2.1), (2.2) determine the law of ring boundary variation in 
time. If we use the notation y(R l) = RIRI, then we obtain a nonlinear first-order differen- 
tial equation in y(RI) (an Abel equation of the second kind [19]) from (2.1) and (2.2). For 
a thin-walled ring this equation has a small parameter in the derivative. Taking the results 
of [20] into account, we find the asymptotic of the solution in the form of a series in the 
small parameter to a given degree of accuracy. 

A numerical computation is represented in [14, 21] for al ~ 0, a2 ~ 0, D = 0, and com- 
parisons are made with known data for a ring of elastic-plastic compressible material [22], 
where the wave pattern in the shell is taken into account. 

3. Rupture Criteria 

The main purpose of this paper is to clarify the singularities in the deformation of 
metal pipes up to rupture under the effect of significant dynamic loads. Rupture is a com- 
plex problem. We use here the known criterion of the fracture mechanics of solids in the 
form of the integral relationship [6] 

]q (V) dV = %,s, (3 .1)  

where V is the volume of the part of the body being rupture from which the elastic energy 
needed for rupture is taken; q is the density of the elastic energy liberated during unload- 
ing of the elastic wave; and I, is the work expended during the rupture of a unit section s, 
of a solid. 

Let us make the trajectory of rupture front propagation specific. Namely, tests show 
that metal pipes rupture during unsteady axisymmetric expansion when radial cracks or a system 
of radial cracks propagates along the wall. The development of each crack is accompanied 
by unloading along a circle being propagated at the speed of sound c [3]. The unloading 
wave progresses a distance ds = cdt on both sides of the rupture section in the time dt. 
The tension energy being liberated is expended in development of the crack [6]. During this 
time the ring inner boundary is expanded by the quantity dR I = R1dt, such that ds = cdR1/R1. 

Propagation of a radial crack over the ring thickness and simultaneous expansion of 
its boundaries permit determination of the rupture along the radius by the expression 

dr = (u c - -  R1)dt, ( 3 . 2 )  

whe re  v c i s  t h e  r a t e  o f  c r a c k  p r o p a g a t i o n  o v e r  t h e  r i n g  wh ich  d e p e n d s  on t h e  c r a c k  l e n g t h  and 
o t h e r  p a r a m e t e r s  o f  t h e  r u p t u r e  p r o c e s s  ( s e e ,  e . g . ,  [ 2 3 ] ) .  Hence ,  i n  t h e  p l a n e  c a s e  we have  
dV = 2ds  f o r  t h e  d e s i r e d  vo lume i n  ( 3 . 1 ) .  

The q u e s t i o n  o f  a q u a n t i t a t i v e  e s t i m a t e  o f  v c f o r  a v i s c o p l a s t i c  m a t e r i a l  i n  a d e f o r m -  
a b l e  r i n g  r e m a i n s  o p e n .  The p r o b l e m  i s  made c o m p l i c a t e d  by t h e  f a c t  t h a t  p r o p a g a t i o n  o f  
a r a d i a l  s e p a r a t i o n  c r a c k  i n  a c y l i n d e r  l o a d e d  by i n t e r n a l  p r e s s u r e  o c c u r s  i n  a m a t e r i a l  
i n  a v a r i a b l e  s t r e s s  f i e l d  and up t o  t h e  t i m e  o f  t h e  c r a c k  a p p r o a c h  t h e  medium u n d e r  con -  
s i d e r a t i o n  u n d e r g o e s  s i g n i f i c a n t  s t r a i n .  I t  i s  h e r e  n e c e s s a r y  t o  f o r m u l a t e  a s s u m p t i o n s  t h a t  
do n o t  c o n t r a d i c t  t h e  r e a l  p r o c e s s .  Fo r  i n s t a n c e ,  making  t h e  b o u n d a r y  c o n d i t i o n s  s p e c i f i c  
at the crack apex would permit a numerical investigation of the propagation process for a 
system of radial separation cracks in a cylinder wall [24]. 

In our case we assume that the process of loss of continuity of the material during 
axisymmetric expansion of the ring boundaries starts from the inner boundary and the rupture 
front is later propagated over the whole radial section of the ring (see, e.g., [3]). We 
use the notation RI, = Rl(t,) for the value of the ring inner radius at the time of material 
rupture t, > 0. For t ~ [0, t,] v c = 0,while for t > t, we have v c > 0 and, as a rule, 
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through rupture of the shell. From the physical viewpoint, this latter means that up to 
a definite value of the deformation time t, (or the relative strain el, = Rz,/RI0 - i), crack 
growth to the critical value occurs at a microlevel in the material, then (for t > t,) the 
crack is propagated intensely over the thickness of a shell known to be taking the latter 
out of the efficient class. 

We consider below the estimate of the parameter t, that characterizes the initial rup- 
ture process and does not require details of the law about the crack propagation velocity 
over the whole section of the ring. The passage to a one-dimensional scheme to determine 
dr from (3.2) permits writing dr = R I - Rz0; then the domain dV enclosed by unloading is 
determined by the dependence 

dV = 2(B1 - -  Rlo)cdt, (3 .3 )  

where  t h e  v e l o c i t y  o f  t h e  c i r c u m f e r e n t i a l  u n l o a d i n g  waves  in  t h e  r i n g  i s  t a k e n  e q u a l  t o  t h e  
i s e n t r o p i c  s p e e d  o f  sound in  t h e  m a t e r i a l  u n d e r  c o n s i d e r a t i o n .  

By d e f i n i t i o n ,  c a = 3Q/30, and we h a v e  f rom ( 1 . 1 ) - ( 1 . 3 )  f o r  t h e  h y p o t h e s e s  a )  and b ) ,  
r e s p e c t i v e l y ,  

= Co / = To; (3.4) 

r %a2 c=coi ) ,, a ~ = a i ( n - - t ) / 2 ,  i = t ,  2. 

It is known [25] that the specific elastic energy of a solid is found in the plane case 
from the expression 

q = T~ ( l  - -  v~)/2E. ( 3 . 5 )  

Here v is the Poisson ratio; E, Young's modulus; Tn, invariant of the tangential stress in- 
tensity which is determined for a viscoplastic body by the dependence [i0] 

Tn = ~812+~H, 

where  H i s  t h e  i n v a r i a n t  o f  t h e  s t r a i n  r a t e  i n t e n s i t y  and f rom ( 1 . 2 )  and ( 2 . 1 ) ,  

H = (2 - -  al)el(Rx/r)2; ( 3 . 6 )  

w h i l e  f rom ( 1 . 3 )  and ( 2 . 2 ) ,  

H = (2 + as) el (R1/r) 92+2. ( 3 . 7 )  

Taking account  of  the  e q u a l i t y  s ,  = R1, - Rz0, fo r  r = R the  formulas  ( 3 . 3 ) - ( 3 . 7 )  permi t  
representation of (3.1) in the form of the integral equation 

3 (  ) / n  
y [ ~ +  ~(2 + (--l)~ai) eli R1 

CoO - v2) , 
(3.8) 

where i = 1 corresponds to case a) and i = 2 to b). The relationship (3.8) determines the 
rupture time t,. The dependence R1(t) is found here from the last equations of the system 
(2.1), (2.2). 

An integral of the type (3.1) was examined in [6] under the assumption of constancy 
of the rate of.expansion of the outer ring boundary (R2 = const). We consider two actual 
cases below: e I = const and Rl = const. Here, the velocity RI increases in the initial 
stage of cylindrical shell boundary expansion under the action of explosion products, and 
the ring radius grows correspondingly, which permits making the approximation e I = RI/RI = 
const. Taking into account the relationship dt = dR1/eiR z, we obtain the following equation 
for ez, = Rz,/Rz0 -- i from (3.8) for el = const, ai ~ 0, ai ~ --i 

�9 T + ~ ( 2 + ( - I / ~ ) / ~  
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(B = E~,/[c o (t - -  ~2)1). 

Taking account of the approximation to second-order accuracy in el, 

(i + e~,) ~ I + aie~, + ai(ai i)el,/-, 

we find from (3.9) 

2Be i 

+ ~ (2 + ( - t / ~ )  e~ 

< 1, 

( 3 . 9 )  

( 3 . 1 0 )  

Analysis of (3.10) shows that there exists a nonmonotonic dependence of el, on the strain 
rate e I. The deduction of the existence of a plasticity peak is conserved in both cases 
i = I, 2. From (1.4) we have for i = 1 a dependence of a I on the strain rate, for i = 2 
there is no such dependence. Thus, from (1.4) and (3.10) for i = 1 

(2 + %) B 
e l , , m a x  ~ 4~Os ( 3 . 11 )  

for 

e t =  2 ( 2 §  4~(p~) I . 

For i = 2 we obtain from (1.4) and (3.10) 

B % 
el*'max = (2 § %)~% for e 1 = 2(2 § %)~ ( 3 . 1 2 )  

When t h e  r i n g  i n n e r  bounda ry  expands  a t  a c o n s t a n t  r a t e  ( ~  = c o n s t ) ,  t h e  i n t e g r a t i o n  
of (3.8) with respect to the variable dt = dRI/R I results in another form of the equation 
as compared with (3.9). However, by conserving the degree of approximation (to the second 
order) in the expansion of binomials in el,, we obtain (i = i, 2) the expression (3.10) exact- 
ly, where $!0 = RI/RI0 must be taken in place of $i = RI/RI �9 

Therefore, the commonality has been confirmed of the existence of a plasticity peak 
in the case of deformation for not only a cylinder with a constant rate in the scheme of 
a viscoplastic incompressible medium [6], but also for a cylinder of compressible viscoplastic 
material in the regimes of inner boundary motion $i = const and RI = const. 

4. Discussion 

In order to compare the values of the ultimate strain calculated by means of (3.10)- 
(3.12) with experiment, the coefficient of dynamic viscosity and the yield point of the ma- 
terial under consideration must be known, and the density distribution law in the shell for 
significant compressibility of the material. It is known [26, 27] that ~, Os depend on the 
strain rate; especially significant is the coefficient of viscosity [28]. Quite limited 
information for ~ is obtained in the 103-106 sec -I strain rate range (see, e.g., [I0, 29-32]). 
Hence, it appears to be of practical and scientific interest to estimate the dynamic viscosity 
coefficient ~ of metals from the e2,, $2, Os, I, known from test data. 

Since mainly quantities corresponding to the ring outer boundary must be worked within 
tests on the dynamic rupture of pipes, we write the relationships useful later for a thin- 
walled cylindrical shell from (2.1) and (2.2) for p = 0 

e t ,  - -  e 2 ,  (1 + 2%) ,  e 2 ,  = R 2 , / R 2 0  - -  ] ,  e 0 = 60 [ R l 0  ~ 

8 --2 e l ~ e 2 [ t + 2 e 0 ( l +  2,) ]~ ( 4 . 1 )  

where 50 is the initial width of the ring wall. 

Then because of (4.1) for an incompressible viscoplastic medium (~I = 0, ~2 = 0, ~ = 1/2) 
we obtain from (3.10) to the accuracy of the first order of smallness in e 0 the expression 

= - - - - - ~  l + 
L 3 % % , %  - 7  L(t§ ~ ( 4 . 2 )  
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Let us compute ~ by means of (4.2) on the basis of test data on the explosive rupture 
of steel pipes [6, 33]. Represented in Figs. 1 and 2 are values of the dynamic viscosity 
coefficient for low-carbon steel (Fig. i is from the data in [6], Os = 0.25 GPa) and for 
Z3CNI8-10 steel (Fig. 2, from data in [33], Os = 0.33 GPa) as a function of the strain rate. 
Taken in the computations for the steels under consideration were E = 200 GPa, c o = 4.6 km/ 
sec, I, = 210 kJ/m 2. The diminution of ~ due to the strain rate follows from Figs. i and 
2, which is in agreement with the general deductions [26, 28] relative to the viscosity of 
metals. A quantitative comparison of the data in Figs. I and 2 with known estimates for 
steel [i0, 28-31] relative to ~ shows the nearby values for the corresponding strain rates. 

Let us examine the structure of the dimensionless parameter w = ~el/os in more detail. 
Substituting it into (3.10) shows that the ultimate strain of the ring material also has 
an extremum in this parameter. Since the viscosity coefficient and the yield point of real 
metals depend on the change in the strain rate [26-28] the relationships 

+ = = (4.3) 

can provisionally be taken for the dynamic characteristics, where nl, n 2, a 0 are positive 
constants; Os0 and D0 are mechanical characteristics of the metal that are obtained during 
tests for the accessible strain rate &10 ~ el- Formulas (4,3) reflect experimental observa- 
tions: insignificant growth of the yield point and even a reduction in a number of cases 
when the strain rate increased (an almost linear dependence) and hyperbolic nature of the 
diminution in the viscosity coefficient of metals (see, e.g., [28] and Figs. i and 2). Then 
we obtain the following equality for the parameter w from (4.3): 

w= --~-80 / i + a o Z ' h  . (4.4) 

Analysis of (4.4) for the variation of x shows that the dependence w(x) has extremal values 
for definite parameters nl, n2, a0. For instance, for n I = I and n2 =ao = 1/2, 

Therefore, the existence of the maximal value for metal strain at the time of shell rupture 
is a characteristic of the material as a function of the strain rate. This is explained 
by the different intensity in the change in strength properties of a metal (os) and internal 
friction (D) during unsteady strain, which indeed governs the plasticity peak. 

If test results relative to the dependence ei,(M) are considered [34, 35] (M is the ratio 
between the weight of the explosive substance and the weight of the cylindrical shell per 
unit length), we obtain curves with a maximum. For instance, according to experiments on 
the high-velocity rupture of thin-walled steel pipes [34] we find the location of the test 
points along the curve that have the maximum ei, : 0.82 for M : 0.87 (Fig. 3). We obtain 
analogous curves with an extremum after treating the test data on explosive rupture of dur- 
aluminum, lead, copper, and brass pipes [35]. 
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The fact noted here about the existence of extremal values for the functions e2,(~2) , 
e2,(M) can apparently be explained by the presence of a single-valued monotonic functional 
dependence between the parameters e2, M, as the energetic estimate of the velocity of cylin- 
drical shell motion under explosive loading [i] indicates. 

Therefore, the analytic dependences found on the basis of the energetic rupture criterion 
(3.1) do not contradict the known test data on the rupture of metal pipes subjected to the 
products of an explosion, and also permit an actual prediction of the value of the plasticity 
peak during unsteady strain of metallic cylindrical shells in a more general formulation. 
In particular, it follows from (1.2)-(1.4), (3.11), (3.12) that different density distribution 
laws for the ring material affect the quantity ez,,max differently. For example, for the 
validity of (1.2) the parameter ~z > 0 increases the value of el,,max while for (1.3) the 
ez,,max diminishes as the parameter ~2 grows. In both cases, taking account of the material 
compressibility reduces the value of the strain rate for which the plasticity peak is achieved. 
Such estimates are needed in practice to select the technological mode for fabrication in 
the dynamics of metal pipes or in the production of new structural forms of cylindrical pres- 
sure vessels. 

The author is grateful to A. G. Ivanov for attention to the research and for very useful 
discussions. 
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